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ABSTRACT 

It  is  shown that the correlation found bv previous investigators between 

the value of the microturbulent velocity parameter  5 .-t 
ratio for  G dwarfs resul ts  f rom invalid assumptions implicit in the differen- 

t ial  curve-of-growth techniques used to der ive 

phere abundance analyses,  the deduced values of E L  will be very close to the 

and the i ron to hydrogen 

6 By using model a tmos-  t '  

~. 

mean value found for  s t a r s  for  approximately so la r  composition. 

Several  authors (e. g . ,  Wallerstein 1962, Aller and Greenstein 1960) have 
suggested on the basis  of differential curve-of -growth (DCOG) analyses that 

ex t reme subdwarf atmospheres a re  character ized by unusually small values 

of the turbulent velocity parameter  5 
evidence that the turbulent velocity dec reases  along with the iron-to-hydrogen 

ratio and thus, in a crude way, with age. This suggestion has led to the 

speculation that the lower values of et ( e ,  5 1 km/sec )  for  the most  metal-  

deficient subdwarfs a r e  related to the decrease  of chromospheric activity 

with age. 

a tmospheres ,  contradicts the results of previous investigations in that for  

two extreme subdwarfs, HD 19445 and HD 140283, they find, respectively, 

& - 2 km/sec  and 2 

- m G t h o r  gratefully acknowledges the surmort of Grant No. NGR 22-024-001 
f r o m  the National Aeronautics and Space Administration. 

Wallerstein (1962) has presented t' 

Recent work by Cohen and St rom (1968), based on detailed model 

5,L 3 km/sec.  
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In this note we present  arguments that demonstrate  that the lower values 

* ,  of 5, derived previously for  subdwarfs a r e  a resu l t  of the assumptions 

implicit  in the DCOG analyses,  and that the t rue  values of 5 a r e  likely to be 

close to those found for  normal  G dwarfs.  
t 

. 

Computation of s te l lar  abundances using DCOG techniques have long been 

popular because e r r o r s  in the assumed transit ion probabilities , atmospheric 

s t ructure ,  and thermodynamic state of the gas ,  a s  well a s  observational 

e r r o r s ,  tend to cancel if  two s tars  of fairly s imi la r  temperature,  gravity, 

and composition a r e  compared and i f  homogeneous plate mater ia l  i s  used. 

In the previous work on subdwarfs quoted above, the authors all performed 

DCOG analyses using the sun as the pr imary  abundance standard. 

temperatures  and gravi t ies  of the subdwarfs under analysis differed only 

slightly f rom the solar  values of these quantities, the DCOG technique would 

be expected to yield reasonable results.  However, the difference in composi- 

tion between a subdwarf and the sun produces a somewhat subtle but essent ia l  

change in the temperature  structure of the atmosphere.  

subdwarf has a lower metal-to-hydrogen ratio and hence a l e s se r  degree of 

blanketing, owing to the presence of spec t ra l  l ines.  

t u re s  of the sun and of a subdwarf of matching emergent  continuum flux in 

the visible a r e  compared in Figure 1 , where we sketch the qualitative 

behavior of the T(T) relation for the sun and the subdwarf. Note that, owing 

to the grea te r  line blanketing, the sun has a lower temperature  for  T 5 5 x 10 

The temperature  difference a t  the boundary can be  a s  grea t  a s  A T  

o r  approximately 300°K for  s t a r s  of near -so lar  effective temperature ,  

Since the 

In particular,  the 

The temperature  s t ruc -  

- 2  . - 0.05 Teff, b 

The lines on the weak-line part of the curve of growth a r e  formed 

pr imar i ly  in the optical depth region marked W in Figure 1 , whereas the 

l ines on the saturated par t  of the curve a r e  formed in region S. 

of Fe I appear in sufficient quantity in the subdwarfs to obtain reliable values 

of 5 f rom the curve of growth. Since the temperature  for  subdwarfs in region 

S is higher than is the case  for  the sun, the fraction of F e  that is  F e I  is  conse- 

quently lower relative to region W, where the so la r  and subdwarf tempera-  

t u re s  a r e  a lmost  the same.  

Only l ines 

t 

In both the so la r  and subdwarf cases ,  F e  is 
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almost  entirely singly ionized. 

and subdwarf curves  of growth that resu l t  for  F e  I is shown in F igure  2. 

l inear  par t s  of the curve have been shifted to take account of the differing 

iron-to-hydrogen ratio. The difference in e lectron p res su re  caused by the 

differing compositions of the sun and the subdwarf has little effect on the 

shapes of the curves of growth, since we a r e  comparing the strengths of the 

saturated lines relative to those of the weak lines. 

A qualitative comparison between the so la r  

* .  The 

If one uses  the solar  curve of growth to analyze the subdwarf, one would 

deduce that t 
f r o m  the DCOG techniques. 

and Strom (1968) avoids this difficulty, however, and higher values of k t  a r e  

deduced. 

is lower in the subdwarf. This is precisely the resul t  obtained 

The model atmosphere approach used by Cohen 

An argument analogous to the one outlined above may explain why s t a r s  

having higher iron-to-hydrogen ratios than does the sun appear to have some- 

what higher values of 5,. 
temperature  to be lower, owing to the increase in the importance of line 

blanketing. 

growth a r e  somewhat stronger relative to the solar  curve of growth and lead 

to an  overest imate  of the turbulence. 

In these meta l - r ich  s t a r s  we expect the boundary 

Therefore,  the F e  I lines on the saturated par t  of the curve of 

Assignment of excitation temperatures  for  s t a r s  of differing composition 

may also resul t  owing to the differences in temperature  s t ruc ture  caused by 

line blanketing . 

This work suggests that the correlation between turbulence and composi- 

tion found previously may not be real. 

pr imari ly ,  if not entirely, f rom the fai lure  of the DCOG method of analysis 

to take account of the differential changes in atmospheric s t ructure  caused 

by line blanketing . 

The correlation appears to resul t  
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Fig.  1 - The behavior of the temperature-optical  depth relations for  the sun 

and fo r  a typical subdwarf. 

formation a r e  indicated. 

The regions of weak (W) and saturated ( S )  line 

Fig.  2 - The qualitative behavior of the curve of growth for  F e  I for  the sun 

and f o r  a typical subdwarf. 
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